Effects of Buffer Gas Composition on Autoignition of Dimethyl Ether

نویسندگان

  • Zhicheng Shi
  • Hongguang Zhang
  • Hao Liu
  • Haitao Lu
  • Jiazheng Li
چکیده

Experimental and numerical studies are conducted on the thermal, chemical and dilution effects of buffer gas composition on autoignition of dimethyl ether (DME). The buffer gases considered are nitrogen (N2), a mixture of N2 and argon (Ar) at a mole ratio of 50%/50% and a mixture of Ar and carbon dioxide (CO2) at a mole ratio of 61.2%/38.8%. Experiments are performed using a rapid compression machine (RCM) at compressed pressure of 10 bar, equivalence ratio (φ) of 1, and compressed temperature from 670 K to 795 K. The N2 dilution ratio considered ranges from 36.31% to 55.04%. The experimental results show that buffer gas composition has little impact on the first-stage ignition delay. However, significant differences in the total ignition delay as a function of buffer gas composition are observed in the negative temperature coefficient (NTC) region. Compared to N2, N2/Ar (50%/50%) mixture decreases the total ignition delay by 31%. The chemical effects of buffer gas composition on the first-stage and total ignition delays are negligible. With increasing N2 dilution ratio, the first-stage ignition delay slightly increases, while a significant increase in the total ignition delay is observed. Moreover, the NTC behavior of total ignition delay is noted to become more pronounced at high N2 dilution ratio. The heat release during the first-stage ignition decreases as N2 dilution ratio increases. Results of OPEN ACCESS Energies 2015, 8 10199 numerical simulations with the Zhao DME mechanism over a wider range of temperature show good agreement with that of experiments. Further numerical simulations are conducted using pure N2, Ar and CO2 as buffer gases. Results indicate that the thermal effects are the dominant factor in low temperature and NTC regions. The chemical effects become pronounced in the NTC region, and the chemical effect of CO2 exceeds the thermal effect at the compressed temperature higher than 880 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD Simulation of Dimethyl Ether Synthesis from Methanol in an Adiabatic Fixed-bed Reactor

A computational fluid dynamic (CFD) study of methanol (MeOH) to dimethyl ether (DME) process in an adiabatic fixed-bed reactor is presented. One of the methods of industrial DME production is the catalytic dehydration of MeOH. Kinetic model was derived based on Bercic rate. The parameters of this equation for a specific catalyst were tuned by solving a one-dimensional homogenous model using MAT...

متن کامل

Research and Assessment of Applying Dimethyl Ether “DME” Extracted from Natural Gas “Ng”, on Diesel Engine as a Clean Fuel (TECHNICAL NOTE)

Due to the shortage of liquid hydrocarbon fuels for compression ignition engines, researchers have constantly been looking for alternative fuels. Recently, dim ethyl ether (DME) with its interesting properties, such as high cetane number and low exhaust emission has drawn a lot of interst as a suitable fuel for diesel engines. The main objective of this study was to assess the potentials and fe...

متن کامل

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

Effect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether

Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...

متن کامل

A Study of Gas Flow in a Slurry Bubble Column Reactor for the DME Direct Synthesis: Mathematical Modeling from Homogeneity vs. Heterogeneity Point of View

In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimization of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from synthesis gas (syngas) and CO2, using a churn-turbulent regime was developed. In the heterogeneous flow model, the gas phase was distributed into two bubble phases including small and large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015